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Project Objectives
• Increase aircraft safety and reduce aircraft maintenance costs 

by improving the accuracy of fault determination in critical 
avionics systems. 

• Develop approaches to detect faults, to model degradations, 
and to predict failures in avionics components. 

• Develop a methodology involving parameter selection, feature 
extraction, pattern recognition, anomaly detection, parameter 
isolation, and remaining useful life estimation. 

• Equip NASA with the ability to monitor the health of onboard 
electronics of an aircraft in actual operating conditions to 
increase the safety and availability of the aircraft. 
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Deliverables

09/30/2010 Final report

09/30/2010 At least one published conference paper or journal article describing the work 
performed

09/30/2010 Demonstration of one of the following:
Prognostic algorithms running online with supplied aircraft avionics data and 
evaluation of their performance
Diagnostic algorithms running online with initial system data

01/01/2010Acceptability determination of supplied aircraft avionics data 

09/30/2009 Evaluation of performance of prognostic algorithms running with initial data sets

09/30/2009 Demonstration of prognostic algorithms running online with initial data sets

09/30/2009 Prognostic algorithm software implementation and documentation

09/30/2008Nominal / faulty data sets for initial system

09/30/2008Initial system description and documentation

Completion 
Date Deliverables 
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Test Vehicle 
• Avionics systems have components and architecture that are 

similar to computer systems:
– Microprocessors
– FPGAs
– Memory systems
– Power systems
– Operating systems
– Firmware

• Computers are complex electronics systems that can be used as a 
test vehicle for developing robust prognostics methodologies.

• The prognostic methodologies tested and validated for 
computers can be implemented for critical avionics systems. 

• CALCE is working with computer companies and can leverage 
these companies’ data and product knowledge for prognostics 
research. 
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Data for Developing Prognostic Methods
• A product’s health is the general state of the product with respect 

to the expected normal operating condition.
• A healthy baseline can be formed by collecting data at the 

beginning of a system’s operational life or using data collected 
before encountering any fault.

• 10 new computers were tested under 72 different combinations 
of environmental, power, and usage conditions.

• Specific system parameters for each computer were monitored 
including fan speed, main component temperature, resource 
management parameters, etc.

• A baseline data set was generated from the above 10 computers 
to train the algorithms used in this research.

• Sample test data was taken from field returned computers
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Sample Representation of “Healthy” Data

Various detection and inference techniques can be used (i.e., Hypothesis testing, 
Bayesian classification, etc.) if the data can be represented by a parametric 
distribution.
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Algorithms
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Algorithms for Anomaly Detection
• Bayesian Support Vector Machine (BSVM) based approach

– In the absence of negative class data (fault or failure information), a 
one-class-classification approach is used to determine healthy and 
unhealthy class data from training data.
Projection Pursuit Analysis (PPA) based approach

• Data are projected onto principle component and residual spaces, and 
statistics, including T2 and SPE, are computed for training data. 

• Symbolic Time Series Analysis (STSA) based approach
– Training data is used to model a healthy system by partitioning its 

derived performance measure in space and time.
Mahalanobis Distance (MD) based approach

• A baseline for the normal operation of these computers is created, 
including the distribution of performance parameters, the MD of 
training data, and ΔMD distribution of performance parameters.
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Anomaly Detection Approach Using BSVM 
[X]

KDE [LR]

SVC [DR]

PP [PR1] … [PRq]

[JCP]

• Decompose into lower 
dimensional models.

• Compute density of 
training data to estimate 
negative class.

• Construct an optimal 
classifier function D.

• Compute the posterior 
class probabilities (PP).

• Compute the joint 
posterior class 
probabilities (JCP). Independence assumption

Training
Data

KDE: Kernel Density Estimation, SVC: Support Vector Classifier
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Anomaly Detection Approach using BSVM 
[T]

PP [PR1] … [PRq]

[JCP]

• Project onto lower 
dimensional models.

• Compute the 
posterior class 
probabilities (PP).

• Compute the joint 
posterior class 
probabilities (JCP). Independence assumption

Test
Data

PCAT
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PCAT: projection of test data based on covariance of training data
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Evaluation of Test Computer 
Using a BSVM

• The training – small % amount of baseline data.
• Sample test data – 5000 sample points.
• Two 2-dimensional subspace decompositions were 

used:
– Model subspace, explained variance: ~0.62
– Residual Subspace, explained variance: ~0.12

• BSVM results identifies system abnormal behavior 
that coincides with the operation of the computer fan.
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BSVM Classifiers
Model Space
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BSVM Application on 
Field - Returned Test Computer 
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Anomaly Detection Approach Using STSA
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STSA Application on 
Field-Returned Test Computer 

Number of training states 110 Vs.  
Number of test states 118 8

Change in critical transition probability,        
training Vs. test

π0- πT = 
0.0443

Change in mean time to stay in critical 
state

T0 – TT = 60 
units
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Database
• Input
• Output

Classes
• BSVM 
• STSA

GUI
• Web application
• Manage project

Software Development

• Software is being developed for diagnostics and 
prognostics by implementing Symbolic Time Series 
Analysis (STSA) and Bayesian Support Vector 
Machine (BSVM) analysis

• The software stores output in an SQL database.
• Classes are written in C#.
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Summary
• A computer system has been identified as a demonstration 

vehicle for PHM algorithm development.
• Training data to represent healthy system have been collected.
• Approaches for anomaly detection that are being developed 

include BSVM and STSA.
• Actual data from computers are used to demonstrate detection 

capability of the BSVM and STSA approaches.
• Software is being developed for all the approaches discussed.
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Next Steps

• Continue to run experiments to generate and record 
soft faults and intermittent failures. (In-progress)

• Detect the intermittent events using following 
algorithms:
– Symbolic Time Series Analysis (STSA)
– Bayesian Support Vector Machines (BSVM)

• Incorporate all approaches into a software.


